

High Performance Computing for heterogeneous Multi-Processor System-on-Chips: A case study in medical imaging applications

Alvin Sashala Naik^{1*}, Alberto Garcia Fernandez², François Duhem², Philippe Millet², Eric Lenormand², Michel Barreteau², Fabrice Lemonnier²

- 1) Laboratoire Astroparticule et Cosmologie (APC) UMR 7164, CNRS-IN2P3, Paris ,France
- 2) THALES Research & Technology, STI/LCHP, Campus Polytechnique 1, avenue Augustin Fresnel, Palaiseau, France

#contact: sashala@apc.in2p3.fr

Journée Scientifique: Le numérique, parlons-en! @ Université Paris Diderot, 75013, France [8 décembre 2016]

I. Introduction

The medical imaging use case characteristics:

- > The source code is based on a sequential C++ algorithm.
- The software needs to be implemented on a Multi-Processor System-on-Chip (MPSoC) target while optimising all the computing capabilities of the application for real-time image processing
- Perform extensive architectural exploration for optimal parallel data processing

II. SLX tool suite

1st approach: SLX Paralleliser 2st approach: Full arch. exploration until target implementation

SLX tool chain: from raw C/C++ high level of abstraction to SW compilation on heterogeneous elements on an Multi-Processor System-on-Chip (MPSoC) targets:

- ✓ CPU Intel, ARM, PowerPC
- ✓ RISC coprocessors
- ✓ DSP coprocessors
- ✓ C66xx processors
- ✓ PowerPC processors
- ✓ TI Keystone

Future targets ?:

- o FPGA Virtex, Kintex, Spartan, ZYNQ
- o GPU AMD, NVIDIA
- o Manycore architectures

SILEXICA

III. Architectural exploration on MPSoC model

SLX Parallelizer

- 1. Analyses C/C++ codes having high level of abstraction and object-oriented dependencies
- 2. Automatic graph call to find parallelism and produces parallelised OpenMP 3.0
- ✓ Source-to-source compilation
- ✓ Homogeneous targets (ARM-based) or host execution ONLY
- ✓ Provides parallelisation hints to the user for possible CPN transcription or OpenMP 4.0 (heterogeneous targets)

SLX Mapper and SLX Generator

- 1. Using the hints from the SLX Parallelizer, the user can manually rewrite the C++ code in C and then in CPN.
- Only then, the user can perform architectural exploration and physical implementation on the SLX catalogue's targets.
- 3. The kernel's parallel execution optimisation can be performed on the SLX mapper's tool

IV. Heterogeneous System Architectures

E.g. the Parallella:

Embedded processors:

- 1. Zynq-Z7010 FPGA
- 2. Dual-core ARM A9 CPU
- 3. Epiphany RISC Manycore Coprocessor

➤ 16, 64 or 1024 cores

Features:

- ✓ C/C++ and OpenCL programmable
- ✓ 32-bit IEEE floating point support
- ✓ 512KB on-chip distributed shared memory
- ✓ 32 independent DMA channels
- ✓ Up to 1GHz operating frequency
- ✓ 512 GB/s local memory bandwidth
- ✓ 64 GB/s Network-On-Chip bisection bandwidth
- ✓ 8 GB/s off-chip bandwidth
- ✓ 1.5ns network per-hop latency
- ✓ <2 Watt maximum chip power consumption

32 GFLOPs peak performance